Economic Valuation of Larch Plantations

JAMES L. ANDERSON, M.S.
SCHOOL OF FOREST RESOURCES
UNIVERSITY OF MAINE
JAMES.L.ANDERSON@MAINE.EDU

Plum Creek Larch Plantation Data

Site	ID	No. of Trees	DBH Measurement Ages	HGT Measurement Ages	Species
Chase Stream	SR 8801	370	$5,10,16,20$	$3,5,10,16,20$	All (EL, HL, JL, TL)
Carrying Place	SR 8801	359	$3,5,10,16$	$3,5,10,16$	All (EL, HL, JL, TL)
Brighton	SR 8801	472	$3,5,10,16$	$3,5,10,16$	All (EL, HL, JL, TL)
Lily Bay	SR 8801	355	$3,5,10,15$	$3,5,10,15$	All (EL, HL, JL, TL)
West Forks	SR 9004	232	$6,10,15$	$2,5,6,10,15$	Hybrid
Brighton/Hartland	TI 9801	900	$3,5,10$	$1,2,3,5,10$	Hybrid
Hartland	TI 9802	1800	3,5	$1,2,3,5$	Hybrid
North Anson	SR 9004	194	$6,10,15$	$2,5,6,10,15$	Hybrid

Completing the Data

Using Regression Imputation, we fill in missing Heights and Diameters
$D B H=\left\{\begin{array}{c}D B H \text { if } D B H \text { is recorded } \\ \min \left(E[D B H \mid \text { Height, Age, Species, Unit }]+\varepsilon_{H g t}, 0.0001\right) \text { if Height is recorded } \\ \min (E[D B H \mid \text { Age, Species, Unit }]+\varepsilon, 0.0001) \text { otherwise }\end{array}\right.$

Height $=\left\{\begin{array}{c}\text { Height if Height is recorded } \\ \min \left(E[\text { Height } \mid D B H, \text { Age,Species, Unit }]+\varepsilon_{D B H}, 0.0001\right) \text { if } D B H \text { is recorded } \\ \min (E[\text { Height } \mid \text { Age,Species,Unit }]+\varepsilon, 0.0001) \text { otherwise }\end{array}\right.$

Operational Property Assumptions

Tree stems are narrow paraboloids
DBH measurement height, DBH. $\mathrm{Hgt}=4.5 \mathrm{ft}$
Minimum Diameter at small end for saw logs, sawDSE $=9.0$ in
Minimum Diameter at small end for biomass, bioDSE $=3.5$ in
Fraction of Unusable Sawlog Volume, cull $=0.100$
Density of Larch, ton.p.ft3 $=.024$ tons $/ \mathrm{ft}^{3}$
We can earn 3\% yield on 30 yr US bonds, so we want a 4\% IRR on our stands

Calculating Stand and Tree Statistics

Base Diameter, DLE $=\frac{\text { DBH }}{\sqrt{1-\frac{\text { DBH.Hgt }}{\text { Hgt }}}}$
Max Product Height, Saw. Hgt $=H g t *\left(1-\left(\frac{\text { sawDSE }}{\text { DLE }}\right)^{2}\right)$, Bio. Hgt $=H g t *\left(1-\left(\frac{\text { bioDSE }}{\text { DLE }}\right)^{2}\right)$
Parabolic Volume, Vol $=\frac{\pi}{2} *$ Bio. $\mathrm{Hgt} *\left(\frac{D L E}{12 * 2}\right)^{2}$
Diameter at hgt, \quad Dia $=D L E * \sqrt{1-\frac{h g t}{H g t}}$
Basal Area, $B A=\pi *\left(\frac{D L E}{12 * 2}\right)^{2}$
Trees per Acre, TPA $=\min _{T P A}\left|1237.7 * T P A^{-.343}-T P A * B A\right|$

Example Breakdown of a Larch

Biomass Small Diameter Cutoff (3.5")

Sawlog Small Diameter Cutoff (9")
Second Log Cut 12'

First Log Cut 16'

Diameter at Breast Height/ 54" height
Diameter at Base/ 6" height

Using the maximum saw height, we calculate the number of $16-, 12$ - and 8 ft logs (6 " trim) we might cut and the height along the stem where they are cut.

Using the Diameter equation, we can calculate the diameter at the small end of each log.

Using each log's length and small end diameter, we can easily estimate board footage using the International $1 / 4$ " Rule and removing 10\% cull (IntBF).

Calculating Stand and Tree Statistics

Convert board footage to cubic feet using $\frac{1 \mathrm{ft}^{3}}{12 \mathrm{BF}}$ conversion
We estimate biomass volume with

$$
\operatorname{Biomass}\left(f t^{3}\right)=\operatorname{Volume}\left(f t^{3}\right)-\operatorname{IntBF} * \frac{1 f t^{3}}{12 B F}
$$

Predicting Sawlog Volume

Sawlog Prediction

Predicting Remaining Biomass

Matching Larch to Products on the Market

Using k-nearest neighbors ($k=5$), we match six Larch lumber properties for each species reported by Koizumi, Kitagawa, and Hirai (2008), Chui and MacKinnon-Peters (1995), and Olson, Poletika, and Hicock (1947) to lumber properties of common commercial species, available in the USDA's Wood Handbook (2010). These 10 Maine species are then mapped to stumpage prices provided by MFS.

Matching Larch to Maine Species

European

- Black Spruce, Red Pine, Eastern Hemlock, Red Spruce, White Spruce

Hybrid

- Eastern White Pine, Atlantic White Cedar, Balsam Fir, White Spruce, Northern White Cedar Japanese
- Eastern Hemlock, Eastern White Pine, Atlantic White Cedar, Balsam Fir, Black Spruce

Tamarack

- White Spruce, Eastern Hemlock, Red Spruce, Black Spruce, Balsam Fir

Matching Larch to Commercial Species

European, \$151.80

- Spruce/Fir x 3, Red Pine, Hemlock

Hybrid, \$154.60

- White Pine, Cedar x 2, Spruce/Fir x 2

Japanese, \$163.60

- Hemlock, White Pine, Cedar, Spruce/Fir x 2

Tamarack, \$178.60

- Spruce/Fir x 4, Hemlock

Sawlog and Total Value of a Larch Stand

Larch Stand 4\% NPV Projection

A Comparison with Spruce and Fir Stands

$\$ 1=40$
SI $=50$
SI = 60
Unmanaged, second growth Balsam Fir Stand 4 \% NPV

SI = 70
Japanese Larch reinvested @ 3\%

Under Infinite Rotations: SEV

Species	'Optimal' Rotation Age	SEV
Balsam Fir	52	$\$ 650$
White Spruce	56	$\$ 725$
Japanese Larch	30	$\$ 1180$

Conclusions

Larch grow quite quickly

- Empirically: $2.90 \mathrm{ft} /$ year on average with Hybrid growing an extra $0.41 \mathrm{ft} / \mathrm{yr}$ and Tamarack lagging by $0.73 \mathrm{ft} /$ year
- DBH growth is roughly $0.16 \mathrm{in} / \mathrm{ft}$ of height growth or $0.47 \mathrm{in} /$ year

Quality stands of Hybrid Larch may start producing some saw logs at age 18 with poorer sites lagging by about two years

Not enough data to determine the optimal financial rotation age, but just growing out to 30 years has good returns

Stand value may be even greater with PCT or mortality recovery

Comments and Questions?

*** Special thanks to Mindy Crandall, Ph.D., ***
** Adam Daigneault, Ph.D., Lloyd C. Irland, and David Maass **
*** and larchresearch.com for photos ***

